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The problem on determination of the nonlinear heat-conductivity coefficient of a body in the cylindrical coor-
dinate system by the method of functional identification has been considered. Computational experiments are
described and calculation results are discussed.

Introduction. At present, gradient methods of minimization of goal functionals are being used widely in the
numerical solution of inverse problems of mathematical physics. For example, an efficient method is the conjugate-gra-
dient method [1, 2] involving regulating procedures. This method, when used for determining the nonlinear heat-con-
ductivity coefficient λ(T) of a body, allows one to calculate the operator conjugated to the internal-superposition
operator. However, the standard approach to such calculations involves the replacement of variables in the double in-
tegral, which complicates the computational procedure and makes its control difficult. Because of this, the finite-dimen-
sion approximation of desired coefficients was performed in many works (see, e.g., [2–6]); thus, the initial functional
infinite-dimension problem was transformed into a finite-dimension one. This approach has both advantages, associated
with the regulating capabilities of finite-dimension approximations, and disadvantages that are due to the a priori un-
certainty of the basis approximation functions selected and their number.

In [7], it was proposed to perform the functional identificaiton of the heat-conductivity coefficient of a body
by gradient minimization of the goal functional without a preliminary finite-dimension approximation of the desired
nonlinear coefficient. This became possible due to the integro-differential representations of the operator conjugated to
the internal-superposition operator, obtained in [7], which do not involve the replacement of variables in the double in-
tegrals. Different variants of functional identification of the heat-conductivity coefficient λ(T) of a body in the
Cartesian coordinate system with the use of a nonlinear parabolic equation were considered. These variants differ by
the functional space and the corresponding Hilbert norm selected for the function λ(T). Certain qualitative properties
of the indicated variants were discussed in [8].

In the present work, we considered the problem on determination of the nonlinear heat-conductivity coefficient
of a body with an axial symmetry in the cylindrical coordinate system. (Such a problem should be solved, e.g., in the
process of determining the thermodynamic properties of seamless metal pipes subjected to a high-temperature thermal
treatment.) The formulation of an inverse problem and the description of the algorithmic part of the functional identi-
fication are presented. Difference schemes for nonlinear nonstationary equations, constructed by the integro-interpola-
tion method and realized with the use of the iteration method, are constructed. Computational experiments are
described and the results of calculations are discussed.

Formulation of the Problem. We will consider a nonlinear parabolic equation for the region Ω =



(r, t): R1 < r < R2, 0 < t ≤ tf


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with the following initial and boundary conditions:

T (r, 0) = T
__

 (r) ,   r 8 (R1, R2) ; (2)

T (R1, t) = g1 (t) ,   T (R2, t) = g2 (t) ,   t 8 [0, tf] . (3)

These conditions are coordinated and the functions c(T), λ(T), T
__

(r), g1(r), and g2(r) are prescribed.
Problem (1)–(3) represents a direct problem on determination of the function T(r, t). Hereinafter we will con-

sider an inverse problem, in which an unknown quantity, apart from T(r, t), will be the heat-conductivity coefficient
of the body. This problem is represented by problem (1)–(3) with the additional condition

T (r∗, t) = T~ (t) ,   t 8 [0, tf] , (4)

where r∗ is a fixed point at which the temperature of the body is measured. The point r∗ lies on the segment [R1, R2].
The above-formulated inverse problem is a classical problem (see, e.g., [2–5]). The methodical basis for the

solution of this problem is provided by the known results of N. V. Muzylev, M. V. Klibanov, O. M. Alifanov, and
other researches [2, 5, 9, 10], who have shown that the indicated problem can be uniquely solved in the case where
additional restrictions are imposed on the initial parameters c(T), T

__
(r), g1(t), g2(t), and T

~
(t). In particular, in addition

to the standard requirements that the function c(T) must be positive, continuous, and piecewise-differentiated, for the
uniqueness of the solution of the problem it will suffice to assume that T

__
(r) = const and the quantities g1(t), g2(t), and

T
~

(t) are monotonically increasing functions.
Computational Formulas. We now consider the functional-identification algorithm used in the inverse prob-

lem (1)–(4) and substantiated in [7]. It represents an iteration process of minimization of the goal functional (the
square of the residual functional)

J (λ) = ∫ 
0

tf

 (T (r∗, t) − T
~

 (t))2 dt . (5)

It is assumed that the region G, in which the functional J is determined, coincides with any open region in

the space L2[T (1), T (2)] (T (1) = min
(r,t)8Ω

__ T(r, t) and T (2) = max
(r,t)8Ω

__ T(r, t), where Ω
__

 is the closure of the region Ω) of

square functions of the form of λ(T) with the Hilbert norm

NλN = 










 ∫ 
T
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(2)

 (λ (ξ))2 dξ











1
2

 . (6)

The algorithm of functional identification of the inverse problem (1)–(4) represents a system of recurrence re-
lations:

λn+1 (T) = λn (T) + βnln (T) ,   n 8 0, 1, 2, ... , (7)

ln (T) = Jλn

 ′  (T) − γn−1ln−1 (T) ,   n 8 0, 1, 2, ... , (8)

where λn+1(T) is the n + 1st approximation of λ(T), ln(T) is the direction of descent in the n + 1st iteration, the pa-
rameters βn, γn−1, and Jλm

′  are be determined below. The initial data used for construction of the algorithm are the
quantity l−1: l−1 = 0; the initial approximation λ0(T) of the function λ(T); the temperature at the point r∗ equal to T

~
(t),

where t 8 [0, tf]; and the output data in the n + 1st iteration — the functions λn+1(T) and ln(T). The recurrence rela-
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tions (7) and (8) represent a variant of the conjugate- gradient method [2]. An abstract scheme of this method is pre-
sented in [7]. The iteration process is terminated when the inequality

 ∫ 
0

tf

pn (t)2 dt ≤ ε (9)

is fulfilled for the residual

pn (t) = Tn (r∗, t) − T
~

 (t) , (10)

where ε is a prescribed empirical parameter and Tn(r, t) is the solution of the initial boundary problem

c (Tn) 
∂Tn

∂t
 = 

1

r
 
∂
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


rλ (Tn) 

∂Tn

∂x




 ,   (r, t) 8 Ω ,

Tn (r, 0) = T
__

 (r) ,   r 8 (R1, R2) ,

Tn (r1, t) = g1 (t) ,   Tn (R2, t) = g2 (t) ,   t 8 [0, tf] .

(11)

The parameter ε is selected on the basis of the residual and generalized-residual criteria, described in detail in [2].
Note that it is well to use the procedure of renewal of the iteration process (7), (8). This procedure involves the se-
lection of the initial approximation in the form of λ0(T) = λn(T) in the case where the goal functional (5) increases in
the n + 1st iteration.

We now determine the parameters βn, γn−1, and Jλn
′ . The function Jλn

′  is the gradient of functional (5) at the
point λ = λn, which is calculated by the formula

Jλn

 ′  = − 
d

dz
  ∫ 
R1

R2

  ∫ 
0

tf

 χ (z, Tn (r, t)) r 
∂Tn (r, t)

∂r
 
∂
∂r

 




1

r
 w (r, t)




 dtdr B

B − 
d

dz
 ∫ 
Ω

Rn (z, r, t) r 
∂Tn (r, t)

∂r
 
∂
∂r

 




1

r
 w (r, t)




 drdt . (12)

Here, χ(z, s) = 




1 ,

0 ,
     

T (1) ≤ s ≤ z ,

z < s ≤ T (2)  is the characteristic function of the set 



sT (1) ≤ s ≤ z




 and R(z, r, t) is the charac-

teristic function of the set ω(z) = 



(r, t) 8 ΩTn(r, t) ≤ z ≤ T (2)


. The function w = w(r, t) in formula (12) is a solution

of the initial boundary problem

c (Tn) 
∂w

∂t
 + λn (Tn) 

∂
∂r

 



r 
∂
∂r

 




1

r
 w







 − δ (r − r∗) pn (t) = 0 ,   (x, t) 8 Ω ,

w (r, tf) = 0 ,   r 8 (R1, R2) ,

w (R1, t) = w (R2, t) = 0 ,   t 8 [0, tf] .

(13)

It should be noted that the gradient Jλn
′  is calculated by formula (12) on the basis of the integro-differential

representations of the operators conjugate to the internal-superposition operator, determined in [7] in the cylindrical co-
ordinate system.

The parameter γn−1 is equal to the ratio between the squares of the gradient norms
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γn−1 = 
NJλn

 ′ N
2

NJλn−1

 ′ N
2
 , (14)

the calculation of which with the use of (6) gives

NJλn

 ′ NL2

2
 =  ∫ 

T
(1)

T
(2)

 

Jλn

 ′ 



2

 dz . (15)

Finally, the parameter βn is determined as

βn = 

∫ 
0

tf

pn (s) ν (r∗, s) ds

∫ 
0

tf

ν2
 (r∗, s) ds

 , (16)

where the function ν = ν(r, t) is a solution of the initial boundary problem

∂
∂t

 (c (Tn) ν) = 
1

r
 
∂
∂r

 



r 
∂
∂r

 (λnν)



 + 

1

r
 
∂
∂r

 



rln (Tn) 

∂Tn

∂r




 ,   (r, t) 8 Ω ,

ν (r, 0) = 0 ,   r 8 (R1, R2) ,

ν (R1, t) = ν (R2, t) = 0 ,   t 8 [0, tf] .

(17)

For simplicity, the subscript n is omitted for the functions w and ν in formulas (12)–(17).
Numerical Simulation. The numerical algorithm of solving the initial boundary problem (1)–(4) is constructed

by the method of grids [11]. The difference schemes for different classes of nonlinear parabolic equations, used in the
method of functional identificaiton, are constructed by the integro-interpolational method. The nonlinear systems of ap-
proximate algebraic equations are solved using the convergent iteration procedures developed by us. For calculating the
integrals in (12), we derived formulas of the third order of accuracy.

The characteristic results of our computational experiments will be illustrated by two model examples, in
which the model functions are the bilinear functions:

Fig. 1. Initial data of the problem: a) cm(T); b) g1(t) (1) and g2(t) (2). cm(T),
W⋅h/(m3⋅oC); T, oC; g1(t), g2(t), oC; t, h.
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λm
(1)

 (T) = 
50.0T + 1000.0

T + 1.0
 , (18)

λm
(2)

 (T) = 
85.0T + 0.4

0.0003T
 2

 + T + 15.0
 . (19)

The functions cm(T) = c(T), g1(t), and g2(t) are presented in Fig. 1a and b respectively.
It is assumed that R1 = 0.05, R2 = 0.3, tf = 2.0, and T(r) = 30.0. The function T

~
 is a numerical solution of

problem (1)–(3) at the point r = r∗ on condition that c(T) = cm(T) and λ(T) = λm
(i)(T), where i = 1, 2. This solution

was obtained using grids with fairly small space and time pitches, a decrease in which has practically no influence on
the final result. For both model examples presented below, the numerical differentiation in (12) was performed by the
formulas of the first order of approximation [11] because, as was established in the process of numerical experiments,
the use of formulas of higher orders of approximation, as high as the second one, does not increase the accuracy of
the calculations.

The results of different computational experiments show that the calculated value of the heat conductivity co-
efficient λ(T) of a body depends substantially not only on the temperature of the body, but also on the choice of the
initial approximation λ0(T), the position of the point r∗ at which the temperature is measured, the size of the grid
pitches, and the value of ε in relation (9). For concrete problems, it is difficult to a priori determine even one value
of these parameters providing the best result in the ratio between the accuracy and rate of the calculations. This situ-
ation is characteristic of the nonlinear numerical analysis as a whole. The influence of the above-indicated factors on
the accuracy and rate of the calculations is complex in character, which is evident from the graphs presented in the
figures.

Figures 2 and 3 illustrate the influence of the choice of the initial approximation on the estimated values of the

coefficients λm
(i)(T), where i = 1, 2. The calculations were carried out using a grid with a space pitch h = 0.005 and a

time pitch τt = 0.01 at r∗ = 0.2 and ε = 0.0001. It is seen from Fig. 2 that the quantities λn(T
T=T

 (1)+0) and

λn(T
T=T

 (2)−0) are close to the quantities λ0(T (1)) and λ0(T (2)) respectively. Consequently, the accuracy of identification

Fig. 2. Influence of the choice of the initial approximation λ0(T) on the result
of identification of the heat-conductivity coefficient λm

(1)(T): 1) λn1

(1) (λ0 = λ0
1);

2) λn2

(1) (λ0 = λ0
2); 3) λn3

(1) (λ0 = λ0
3); 4) λm

(1)(T); 5) λ0 = λ0
1; 6) λ0 = λ0

2; 7)
λ0 = λ0

3. λ, W/(m3⋅oC); T, oC.

Fig. 3. Dependence of the results of identification of the heat-conductivity co-
efficient λm

(2)(T) on the choice of the initial approximation λ0(T): 1) λn1

(2) (λ0
= λ0

1); 2) λn2

(2) (λ0 = λ0
2); 3) λn3

(2) (λ0 = λ0
3); 4) λm

(2)(T); 5) λ0 = λ0
1; 6) λ0 =

λ0
2; 7) λ0 = λ0

3. λ, W/(m3⋅oC); T, oC.
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of λ(T) at the ends of the segment [T (1), T (2)] can be improved by selecting an initial approximation that at the ends of

this segment would be identical or fairly close to λ(T) at these ends (curves 2 and 3 in Fig. 2 and curve 1 in Fig. 3).
The influence of the value of r∗ on the accuracy of the calculations is demonstrated in Figs. 4 and 5. The

accuracy of identification of the coefficient λ(T) at the points T (1) and T (2) depends on the distance from the point
r∗ to these points.

However, in the general case, for bodies in both the cylindrical and Cartesian coordinate systems [7, 8] it is

difficult to estimate the values of λ(T) at the ends of the segment [T (1), T (2)] with the use of the above-described al-

gorithm. The quantities λn(T
T=T

 (1)+0) and λn(T
T=T

 (2)−0), where n = 1, 2, ..., remain close to the quantities λ0(T (1))

and λ0(T (2)) respectively. We failed to obtain satisfactory ratios between the values of λn(T (1)) C λ(T (1)) and λn(T (2))

C λ(T (2)) (Figs. 2–8) by varying the value of the grid pitches and the value of r∗.

Fig. 4. Results of calculating the coefficient λm
(1)(T) depending on the value of

r∗; 1) λn1

(1) (r∗ = 0.2); 2) λn2

(1) (r∗ = 0.275); 3) λm
(1)(T); 4) λ0(T). λ, W/(m3⋅oC);

T, oC.

Fig. 5. Dependence of the results of calculating the coefficient λm
(2)(T) on the

value of r∗: 1) λn1

(2) (r∗ = 0.2); 2) λn2

(1) (r∗ = 0.275); 3) λm
(2)(T); 4) λ0(T). λ,

W/(m3⋅oC); T, oC.

Fig. 6. Results of estimating the coefficient λm
(1)(T) depending on the steps of

numerical differentiation of the operator in (12): 1) λn1

(1) (τT = 10.0); 2) λn2

(1)

(τT = 42.8); 3) λn3

(1) (τT = 97.0); 4) λm
(1)(T); 5) λ0(T). λ, W/(m3⋅oC); T, oC.

Fig. 7. Influence of the steps of numerical differentiation of the operator in
(12) on the result of estimating the coefficient λm

(2)(T): 1) λn1

(2) (τT = 10.0); 2)
λn2

(2) (τT = 42.8); 3) λn3

(2) (τT = 97.0); 4) λm
(2)(T); 5) λ0(T). λ, W/(m3⋅oC); T, oC.
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Experiments carried out for different parameters have shown that the accuracy of determining λ(T) increases
when the space and time pitches are decreased to a certain value. In the case were grids with an insufficiently small
pitches are used, large errors can be introduced into the calculation results. However, the use of grids with a very
small pitch τT for numerically calculating the derivative in gradient (12) can lead to the appearance of nonphysical
fluctuations and large errors in the calculations (curves 2 and 3 in Fig. 6 and curves 1 and 2 in Fig. 7). To obtain a
reliable result, it is necessary to change the value of the pitch τT in a wide range in the process of estimating the heat-
conductivity coefficient of a body.

A decrease in the value of ε in (9) leads to an increase in the accuracy of the calculations. Figure 8 shows
the influence of the value of ε on the result of estimation of the coefficient λm

 (2)(T). In this case, account must be
taken of the fact that the use of a very small ε can lead to a significant increase in the number of iteration cycles in
algorithm (7), (8), which does not aid markedly in increasing the accuracy of the calculations. Therefore, it makes
sense to determine the rate of change in the residual and to stop the calculations at a certain number of iterations.
Note that the choice of ε is determined by the forms of λm, the initial approximation λ0, and the value of r = r∗. If
the initial approximation is selected inadequately, the residual can increase in the n + 1st iteration. In this case, it is
necessary to change the initial approximation or to perform the renewal procedure, in which the quantity λn(T) is used
as the initial approximation λ0. Then problem (1)–(4) is solved with this initial approximation.

The results of investigation of the influence of the initial data containing a "noise" on the solution of the in-
verse problem on the heat conductivity of a body in the cylindrical coordinate system (Fig. 9) allows the conclusion
that the solution of this problem is numerically unstable relative to the indicated data and that the number of iterations

Fig. 8. Results of identification of the heat-conductivity coefficient depending
on the value of the residual ε: 1) λn1

 (ε = 0.1); 2) λn2
 (ε = 0.01); 3) λn3

 (ε =
0.001); 4) λm

(2)(T); 5) λ0(T). λ, W/(m3⋅oC); T, oC.

Fig. 9. Exact y(t) (1) and disturbed ϕ(t) (2) values of the initial data (a) and
their influence on the results of calculating the coefficient λm

(2)(T) (b): 1) λ2; 2)
λ13; 3) λ34; 4) λm

(2)(T); 5) λ0(T). λ, W/(m3⋅oC); T, oC; y(t), ϕ(t), oC; t, h.
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at which the calculations by the algorithm should be stopped is determined, as in [8], by the level of the "noise." Fig-
ure 9b shows that the solution of the problem being considered is numerically unstable in the case where the initial

data include high-frequency quasi-periodic fluctuations: ϕ(t) = T
~

(t) + ∑ 

i=1

n

ai sin (ωt) (Fig. 9a).

Conclusions. Our calculations have shown that the method proposed for functional identification of the heat-
conductivity coefficient of a body and the numerical algorithms used for this purpose are fairly efficient. The indicated
method allows one to determine the heat-conductivity coefficient of a body fairly exactly. However, to obtain reliable
results, it is necessary to use different computational parameters in the process of calculations. It is well to visually
observe, with the use of a computer, the change in the residual and the number of iterations. The algorithm developed
by us can be effectively used for determining the thermophysical properties of tubular bodies.

The indicated algorithm also allows one to estimate the heat-conductivity coefficient of a body with a discon-
tinuous derivative with respect to the temperature, which is of particular importance for estimating the heat-conductiv-
ity coefficients in transfer processes with phase transformations.

NOTATION

a, amplitude; r, radius, m; c(T), heat capacity, W⋅h/(m3⋅oC); t, current instant of time, h; tf, final instant of
time, h; T, temperature, oC; βn, descent coefficient; εn, residual; λ(T), heat conductivity coefficient, W/(m⋅oC); λ0, zero
approximation; λn, nth approximation; λm, model function; ϕ(t), initial data with a "noise", oC; Ω, computational re-
gion. Subscripts: m, model; f, finite; n, number of an algorithm iteration.
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